In dieser Episode besprechen Hans-Dieter Höltje und Bernd Rupp die unterschiedlichen Mechanismen der Blutgerinnung.
Oben ist die Struktur von Fibrinogen dargestellt. Gezeigt wird das Proteinrückgrat, wobei die Alpha-Kette rot, die Beta-Kette blau und die Gamma-Kette gelb eingefärbt sind. Unten findet sich eine schematische Darstellung der Struktur, in der die Ketten analog eingefärbt sind. Die globulären Domänen der jeweiligen Ketten sind zusätzlich in den entsprechenden Farben hervorgehoben. A und B markieren die Fibrinopeptide, die für die Aktivierung abgespalten werden müssen; Quelle: Hans-Dieter Höltje.
Nach einem kurzen Überblick über die zellulären Bestandteile des Blutes und die Zusammensetzung des Blutplasmas gibt Hans-Dieter einen historischen Rückblick, bevor er die zentralen Mechanismen der Hämostase einführt. Dabei erläutert er zunächst die primäre Hämostase, bei der es durch die Aktivierung von Thrombozyten zu einer schnellen Wundabdeckung kommt.
Die komplexere sekundäre Hämostase basiert auf der Aktivierung verschiedener Gerinnungsfaktoren im Blut. Diese führen über unterschiedliche Wege zur Bildung von unlöslichem Fibrin, dem Endpunkt der Gerinnungskaskade. Hierbei unterscheiden sich der intrinsische und der extrinsische Mechanismus, die jeweils durch verschiedene Trigger aktiviert werden können.
Da die meisten Gerinnungsfaktoren Serinproteasen sind, wird in der Episode auch deren Synthese, die Rolle von Vitamin K bei diesem Prozess sowie der Aufbau des aktiven Zentrums einer Protease dieses Typs ausführlich besprochen. Dabei ist die Aktivierung der Aminosäure Serin in der sogenannten katalytischen Triade ein zentrales funktionelles Element des aktiven Zentrums einer Serinprotease.
In dieser Episode sprechen Hans-Dieter Höltje und Bernd Rupp über Prostanoide und Leukotriene, die von Fettsäuren abgeleitet werden, sowie über die peptidischen Kinine.
Obwohl es nicht viele Wirkstoffe gibt, die diese Substanzgruppen direkt ansprechen, ist es dennoch wichtig, sie zu kennen, da viele Körperfunktionen durch diese Mediatoren gesteuert werden. Besonders relevant sind hierbei einige pathophysiologische Effekte, die im Verlauf verschiedener Krankheiten auftreten können.
Struktur von Montelukast überlagert von der Struktur des Leukotrien E4 (rot); Quelle Hans-Dieter Höltje.
Sowohl Prostanoide als auch Leukotriene werden im Körper aus Arachidonsäure gebildet. Daher sprechen Hans-Dieter und Bernd zunächst über die Herkunft und die Biosynthese der Arachidonsäure, bevor sie detailliert die Bildung der Eicosanoide erklären. Dabei legen sie besonderen Wert auf die Unterschiede in der räumlichen Struktur der verschiedenen Eicosanoide, die zwar oft unscheinbar wirken, aber erhebliche Auswirkungen auf deren Erkennung durch Rezeptoren haben.
Am Ende der Episode werden die Kinine besprochen, die im Gegensatz zu den Eicosanoiden Peptide sind. Neben der Sequenz und den daraus resultierenden chemischen Eigenschaften dieser Peptide wird gezeigt, wie wichtig das Wissen über diese Mechanismen ist, da sich dadurch auch wichtige Nebenwirkungen erklären lassen. Beispielsweise verlangsamen ACE-Hemmer den Abbau von Bradykinin und können dadurch zu trockenem Husten führen, was häufig eine Änderung der Therapie erforderlich macht.